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Abstract. To describe quantitatively the complexity of two-dimensional patterns we introduce a complexity
measure based on a mean information gain. Two types of patterns are studied: geometric ornaments and
patterns arising in random sequential adsorption of discs on a plane (RSA). For the geometric ornaments
analytical expressions for entropy and complexity measures are presented, while for the RSA patterns these
are calculated numerically. We compare the information-gain complexity measure with some alternative
measures and show advantages of the former one, as applied to two-dimensional structures. Namely, this
does not require knowledge of the “maximal” entropy of the pattern, and at the same time sensitively
accounts for the inherent correlations in the system.

PACS. 05.20.-y Classical statistical mechanics – 05.90.+m Other topics in statistical physics, thermody-
namics, and nonlinear dynamical systems

1 Introduction

During the past decade numerous definitions of complex-
ity have been proposed (e.g. [1–11]) and successfully used
in various fields, ranging from information processing (e.g.
[1,12,13]), and theory of dynamical systems (e.g. [2,3,14])
to thermodynamics (e.g. [5,15,9]), astrophysics [16], geo-
physics [17], evolution theory (e.g. [18,19]) and medicine
diagnostics (e.g. [20,21]). Many of these definitions rely
on the intuitive impression that complexity should reflect
some hidden order of a phenomenon, which nevertheless
possesses a certain degree of randomness. Neither well-
ordered nor completely disordered objects are seemingly
complex; thus complexity appears somewhere at the bor-
derline between disorder and order. Formally, this implies
that complexity is a convex function of the disorder, pro-
vided the latter is appropriately defined (see [9] for a dis-
cussion).

Quite commonly, the definition of disorder is based
on the comparison of the Boltzmann–Gibbs–Shannon en-
tropy [22]

S = −
∑
i

pi log2 pi, (1)

with the maximal possible entropy of the system Smax [9].
Here pi is the probability of the state i of the system [23].
The value of the maximal entropy Smax depends on the
nature of the system, but for the simplest case when N
states are available, the maximal entropy is achieved for
the equiprobable distribution pi = 1/N :

Smax = log2N. (2)

Thus, the disorder is defined as S/Smax and correspond-
ingly the disorder-based complexity Γαβ [9]:

Γαβ = (1− S/Smax)α (S/Smax)β . (3)

For α > 0, β > 0, Γαβ is a convex function of disorder.
Other values of these parameters may correspond to al-
ternative definitions of complexity [9].

The relevance of this complexity measure Γαβ as in-
troduced by equation (3) has been demonstrated in ap-
plication to the logistic map and to one-dimensional spin-
systems [9]. We however wish to stress two features of the
definition (3): (i) it exploits a concept of “maximal pos-
sible entropy”, which for some systems may not be eas-
ily computed and even unambiguously defined, and (ii) it
lacks in accounting for inherent correlations in the system,
which are certainly an important component of order, and
thus of complexity.

On the other hand the definition of complexity based
on the mean information gain [2] does not require knowl-
edge of the maximal entropy and at the same time it
sensitively reflects inherent correlations. The concept of
the mean information gain as complexity measure has
been previously applied to analyze one-dimensional sig-
nals or one-dimensional phase trajectories of dynami-
cal systems [2]. Although an impressive formulation of
the complexity definition problem has been given by
Grassberger [3] just for two-dimensional patters, no regu-
lar analysis of the complexity of the 2D-structures and of
the corresponding pattern formation processes has been
yet performed using this information gain concept.

In the present study we address the problem of com-
plexity of two-dimensional patterns and pattern formation
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process focusing on that facet of complexity which refers
to spatial correlations inherent for the system. Therefore,
we measure the complexity via the mean information gain
and compare this with entropy and, when possible, with
the complexity (3) defined through the disorder S/Smax.
To make the problem more transparent, we consider first a
specially tailored simple model of pattern formation pro-
cess which generates all kinds of structures from disor-
dered to completely ordered ones. The simplicity of this
model allows an analytical treatment for all quantities of
interest which favors this model with respect to the other
ones. This is used to illustrate the basic concepts; then a
more realistic model of pattern formation is studied. We
analyze complexity and entropy of 2D structures arising at
polydisperse random sequential adsorption (PRSA). This
model describes a wide variety of processes in nature and
its patterns also range from completely disordered to that
of a high degree of order. We show that complexity may
be effectively used to quantify the degree of order of these
patterns. Compared to entropy, this allows to discriminate
much sharply the structures according to their complexity.

This paper is organized as follows. In Section 2 we
analyze the pattern formation process according to our
simplified model. We find entropy and complexity, using
both definitions, as through disorder, as via the mean in-
formation gain. In the context of the complexity, we briefly
address the pattern recognition problem. In Section 3 pat-
tern formation at the polydisperse random sequential ad-
sorption is studied. Dependence of the entropy and com-
plexity on the microscopic parameter of the model is
analyzed. In Section 4 we discuss our results and in the
last Section 5 we summarize our findings. Some computa-
tion details are given in the Appendix.

2 Two-dimensional ornaments

The simple model of pattern formation process that we
study here is formulated as follows. We have a given 2D
structure (here we chose a simplest geometric ornament)
composed of white, grey and black elements and trace,
how this structure (ornament) gradually emerges from an
initially sructureless uniform (grey) background. Accord-
ing to our model, at each current step of evolution every
element may change its present color with a probability P0

to the color (black or white) determined by the given final
ornament. If the required final color is achieved, the ele-
ment does not change anymore. Thus, during this pattern
formation process a set of random patterns is generated
with different degree of their spatial correlations. In the
beginning of the process these are very vague (only few
elements have got their final color), while at the end, the
correlations are dominant (practically all elements have
got their final color). Intermediate patterns demonstrate
gradually developing inherent correlations. As one can see,
the model we have chosen here is a specially tailored model
to generate all kind of patterns with different degree of or-
der due to their spatial correlations. This seems to be one
of the simplest models to illustrate an application of the
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Fig. 1. Formation of the ornament. Fragments (a)-(e) corre-
spond to different stages of the process

information-gain complexity to 2D patterns and check its
sensitivity to inherent correlations.

Figure 1 illustrates the formation of the ornament ac-
cording to the rules formulated above and with the ele-
ments being the square cells of an equal size.

Now we introduce probability pi that an arbitrarily
chosen element has the ith color, where i = 1, 2, 3 refers
to white, grey and black color. Extremely simple evolution
rules allow to write immediately the time dependence of
the probabilities (details are given in Appendix):

pw(t) = pb(t) =
1
3

(
1− e−t/τ0

)
pg(t) =

1
3

(
1 + 2e−t/τ0

)
(4)

here w, b, g correspond to white, grey and black color re-
spectively, τ−1

0 ≡ P0 and for simplicity the case of contin-
uous time is addressed. Equations (4) yield explicit time
dependence for the Shannon entropy:

S(t) = −1
3

(
1 + 2e−t/τ0

)
log2

(
1
3

+
2
3

e−t/τ0
)

−2
3

(
1− e−t/τ0

)
log2

(
1
3
− 1

3
e−t/τ0

)
. (5)

Figure 2 shows S(t) for this pattern formation pro-
cess. As it is seen from Figure 2, the Shannon entropy
is minimal at the beginning of the process and reaches its
maximum at the end. However, from the intuitive point of
view, intermediate patterns are more complex than both
the final and the starting ones. Indeed, the starting pat-
tern is simply uniform (Fig. 1a), while the final (Fig. 1e) is
highly organized: knowing the color of one element allows
to predict the colors of all the others. Such easily pre-
dictable systems can hardly be called complex. Thus (as
expected) the Shannon entropy is not a proper measure
of complexity in this case.

In the particular case of the ornament formation
model, that we have considered above, one can define the
maximal entropy as Smax = log2 3, and using equation (5),
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Fig. 2. Evolution of the entropy S (Eq. (1)) and of the
information-gain complexity G (Eq. (6)) in the process of the
ornament formation. P0 = 0.1. The maximum complexity cor-
responds to the pattern shown in Figure 1c.

compute the disorder (S/Smax) and the complexity Γαβ ,
according to (3). Γαβ with positive α > 0 and β > 0 will
be zero for both starting and final patterns. However, zero
complexity of the final pattern follows rather from the for-
mal definition (3) than from the inherent properties of the
structure. Indeed any final ornament, independently of its
structural characteristics would have zero complexity if
definition (3) is used. This is not consistent with the ex-
pectation that complexity should reflect some (probably
hidden) correlations of patterns.

Let us introduce the information-gain complexity G
for 2D patterns

G = −
∑
i,j

pij log2 pi→j , (6)

which is analogous to complexity measure used in [2] to
analyze one-dimensional signals. Here pij is the joint prob-
ability that a given cell has the ith color and that the
neighbor cell, say upper (or lower, or left, etc.) [24] has
the color j; pi→j = pij/pi is the corresponding conditional
probability. If pi→j = 1 for some particular j = j∗ and
pi→j = 0 for all other j, then specifying the color of ith
cell, no freedom is left for the color of its (upper) neighbor.
That means that knowing probability pi in this case, no
additional information may be extracted from the joint
probability pij or from pi→j . These contain some addi-
tional information only if pi→j 6= 0, 1. The complexity
measure G, as defined by equation (6), measures the lack
of information about other elements of the structure (e.g.
the color of the upper cell as considered here), when some
properties of the structure are known (e.g. the color of
some cell); therefore we call it the information-gain com-
plexity.

Note that probabilities pij , or pi→j describe, in fact,
spatial correlations in the system and thus the complexity
G, as given by equation (6), sensitively detects inherent

correlations of patterns. Neither the Shannon entropy, nor
the complexity Γαβ defined above are able to do this.

It is convenient to write the information-gain complex-
ity as

G =
∑
i

piS
cond
i ,

where the function

S cond
i = −

∑
j

pi→j log2 pi→j

may be termed as conditional entropy, i.e. the entropy of
the upper neighbors of the cells of the ith color. Evaluation
of the complexity G is somewhat more involved, although
still straightforward (see Appendix for detail). The joint
probabilities read

pgg(t) =
1
3

e−t/τ0
(

2 + e−t/τ0
)

pgw(t) = pbg(t) =
1
3

e−t/τ0
(

1− e−t/τ0
)

pwg(t) = pgb(t) =
1
3

(
1− e−t/τ0

)
pbw(t) =

1
3

(
1− e−t/τ0

)2

pww(t) = pwb(t) = pbb(t) = 0 (7)

with obvious notations, and correspondingly the com-
plexity:

G(t) = −1
3

(1− f)f log2

[
(1− f)2f

(3− 2f)

]
−1

3
f log2

[
f (f+1)

(3− 2f)

]
−1

3
(1− f)(3− f) log2

[
(1− f)(3− f)

(3− 2f)

]
(8)

where we introduce the short-hand notation, f ≡ 1 −
e−t/τ0 . The complexity G, given by equation (8) is zero
for the starting and final ornaments and reaches its max-
imum for the intermediate ones (see Fig. 2), which intu-
itively seem to be the most complex one. This depends
sensitively on the structural properties (inherent correla-
tions) of the patterns. Contrary to Γαβ , whose definition
implies zero complexity for all final patterns, the value of
G is sensitive to the particular distribution of colors.

Another simple example illustrating the relevance of
the introduced complexity measure G and its advantages
also with respect to the measure Γαβ (at least for the anal-
ysis of 2D structures) refers to the set of ornaments given
in Figure 3. Since the total number of black and white ele-
ments in these ornaments are equal, so that p1 = p2 = 1/2
(p1 and p2 denote probabilities of white and black col-
ors), the Shannon entropy is equal for all the patterns
(S = log2 2 = 1). The same is true for Γαβ , which is triv-
ial for all the structures (Γαβ = 0). Thus neither S nor
Γαβ discriminate patterns in Figure 3, which obviously
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Fig. 3. Application of the complexity notion to pattern recog-
nition. All four patterns have the same Shannon entropy S = 1
and the same disorder-based complexity Γαβ = 0, but different
values of the mean information gain G: 0, 0.35, 0.83, and 1.0
(from left to right).

should have distinct complexity; the information-gain
complexity G is, however, sensitive to different features of
these structures. Indeed, the four ornaments in Figure 3
have different information gain complexity equal (from the
left to the right) to 0, 0.35, 0.83 and 1.0. Therefore the
complexity measure G based on the concept of mean in-
formation gain may be successfully applied to the pattern
recognition process.

Note that in this section we used a simplest definition
for G in order to illustrate the idea. Such (simplified) def-
inition would not allow to discriminate e.g. vertical strips
from the chess-board. In both cases G would be zero. This
happens because in the definition of the mean information
gain only the color of one (upper) neighbor is accounted.
Generalization of the definition, which allows to discrimi-
nate these patterns and that with more subtle differences
is straightforward: one just needs to add similar measure
based on the color of the right (or left) neighbor.

Consider now application of the complexity measure to
analyze 2D structures appearing in a more realistic pat-
tern formation process.

3 Random sequential adsorption patterns

Here we analyze the structural characteristics of patterns
arising in the process of polydisperse random sequential
adsorption (PRSA). Random sequential adsorption (RSA)
is one of the basic pattern formation process, which refers
to the case when particles come to the surface from the
bulk randomly and sequentially and adsorb without over-
laps on the substrate. Once adsorbed, particles can not
diffuse or leave the surface. Applications of the RSA are
numerous and range from various adhesion processes to
chemisorbtion and epitaxial growth (see e.g. [25] for re-
views). In applying RSA to real processes in nature, one
should take into account that particles may differ in size.
An important example is the adsorption of colloidal par-
ticles, which have a wide radii distribution, usually de-
scribed by the Schulz distribution [26]. This has a power-
law dependence on the particle radius R for small R and
exponential tail for large R. As a reasonable simplifica-
tion of the Schulz distribution, which still possesses its
most important properties is the power-law distribution
with an upper cutoff [27–30]:

P (R) =
{
αRα−1 for R ≤ 1,
0 for R > 1,

(9)

where P (R) gives the probability that the particle radius
is in the interval (R,R + dR) (

∫
dRP (R) = 1 and α > 0

due to the normalization requirement), and the upper cut-
off is taken as a unit of length. The PRSA of 2D discs with
distribution (9) has been studied analytically and numer-
ically in [27,28] and analytically for 1D discs (segments)
in [29].

Details may be found in [27,28]; here we briefly sketch
main results of these studies which refer to the structural
properties of the arising patterns. First we mention that
these are fractals, and depending on the exponent of the
distribution (9) α, they exhibit all grades of order (disor-
der). For small α� 1 the patterns look like a random set
of small discs, forming a “background”, in which larger
discs are randomly immersed. With increasing α patterns
become more and more ordered and for α → ∞ they are
locally isomorphic to Apollonian packing, which is a reg-
ular fractal [31].

Owing to the power-law distribution of the particles
size, all the plane would be finally (i.e. at t → ∞) cov-
ered by discs, since smaller and smaller particles may be
continuously added to the structure into holes between
larger discs. For finite time t <∞, however some fraction
of the substrate Φ(t) is always kept uncovered. Obviously
it decreases with time and it was shown [27,28], that the
long-time asymptotic of the function Φ(t) reads

Φ(t) ∼ t−z (t→∞) (10)

where the exponent z tends to zero in both limits, α→ 0
and α→∞, while it reaches maximum at α = 1 [27,28].

Typical PRSA patterns have been given in our pre-
vious studies [27,28]; for the completeness of the present
one, and in order to provide the visual impression, we
show some of them in Figure 4. As one can see from the
figures, the order increases (along with enhancing spatial
correlations) when the exponent α becomes larger. At the
same time, according to intuition, one would choose in-
termediate patterns (with α ∼ 1) as the most complex
ones. With the use of the complexity measure based on
the information gain, we now quantify this intuition based
anticipation.

To define entropy and complexity of the PRSA pat-
terns, we note that a pattern of N disks can be character-
ized by the set of N points in the three-dimensional space
(x, y, r), where x and y are coordinates of the disk cen-
ters on a plane and the additional dimension r is used to
characterize their radii. Dividing the continuous (x, y, r)−
space into discrete cells and enumerating these cells (for
computations, we use the homogeneous 500× 500× 5000
partition), one can characterize the pattern by the set
{i1, i2..iN} of N numbers, where im is the index of the
cell corresponding to mth disk. (To avoid a confusion we
emphasize that im refers to the index of a cell which cor-
responds to a particular location of the disc center and a
particular radius of the disc; this, certainly, does not mean
that each disc occupies only one cell in the x− y plane).

Now we are able to introduce the Shannon entropy:

S(N) = −
∑

i1,..,iN

p{i1,..,iN} log2 p{i1,..,iN}, (11)
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Fig. 4. Patterns obtained in random sequential adsorption of
size-polydisperse discs for different exponents α of the particle-
size distribution (9): (a) α = 0.1, (b) α = 1, (c) α = 10, and
(d) α = 50.

where p{i1,..,iN} is the probability of the configuration
{i1, .., iN}. We can also define the information-gain com-
plexity:

G = −
∑

i1,..,iN ,j

p{i1,..,iN}j log2 p{i1,..,iN}→j , (12)

where j is the index of the cell occupied by the (N + 1)th
disc, p{i1,..,iN} j is the joint probability of the config-
uration {i1, .., iN} of N disks and of the location of
the (N + 1)th disk in the jth cell, and p{i1,..,iN}→j =
p{i1,..,iN} j/p{i1,..,iN} is the probability to insert the next
disc into the jth cell when the configuration {i1, .., iN} of
N discs is given.

For a purely deterministic structures, the value
p{i1,..,iN}→j is zero for all cells (i.e., for all indexes j),
except the single one, for which p{i1,..,iN}→j = 1. This
naturally implies that G = 0 for such patterns.

Noticing that

S(N + 1) = −
∑

i1,..,iN ,j

p{i1,..,iN}j log p{i1,..,iN}j , (13)

allows to recast equation (12) into the form:

G(N) = S(N + 1)− S(N) , (14)

which shows that the information-gain complexity is
equal to the entropy production rate per particle,

G(N) ≈ dS/dN , that has been introduced recently [27,
28]. One should comment on this in more detail. The gen-
eral definition of the information-gain complexity (12), as
in the case of ornaments, measures the lack of information
about the other parts of the pattern (location and radius
of (N + 1)st disc in PRSA) in the case when some infor-
mation about the structure is known (location and radii of
other N discs). In the particular case of random sequential
adsorption, which is addressed here, and more generally, in
the case when a pattern is studied by taking sequentially
into account more and more elements of the structure (us-
ing e.g. more and more fine grid), the information-gain
complexity G(N) occurs to be equal to an extra entropy
which “brings” to the system of N elements (N +1)st ele-
ment. If entropy persists, i.e. if S(N + 1) = S(N), so that
taking into account a new element does not change our
knowledge about the system, the information-gain com-
plexity is zero, as expected.

The complexity G and entropy S were determined
numerically according to the following scheme. First we
rewrite the complexity as

G =
∑

i1,..,iN

p{i1,..,iN}S
cond
{i1,..,iN}, (15)

where

Scond
{i1,..,iN} = −

∑
j

p{i1,..,iN}→j log2 p{i1,..,iN}→j (16)

is the conditional entropy of (N + 1)th disc in a pat-
tern, consisting of N discs of a particular configura-
tion {i1, .., iN}. Probabilities p{i1,..,iN}→j (and, therefore,
the conditional entropy S{i1,..,iN}) can be easily deter-
mined numerically for any given configuration {i1, .., iN}.
Namely, if R(xj , yj) is the radius of the largest disk that
can be inserted at the point xj , yj of the pattern without
overlaps with previous discs, then

p{i1,..,iN}→j = Ajr
α−1
j /

∑
k

Akr
α−1
k , (17)

where An = 0 if R(xn, yn) < rn, otherwise An = 1.
To obtain the complexity value (15), it is necessary to

average the conditional entropy over all possible configu-
rations of N discs. In reality, one has to perform Monte
Carlo runs, with averaging made over a finite set of config-
urations which should be representative. The accuracy of
the method can be estimated through from-run-to-run de-
viations. In practice, it turns out that the number of runs
∼ 100 guarantees a satisfactory accuracy of the calculated
values of G(N) and S for the size of the simulation cell
chosen (this was 5× 5 for Rmax = 1).

Once the complexity G is known, equation (14) can be
used to calculate entropy. Results are shown in Figures 5
and 6.

In the plots, the values of S and G are given as func-
tions of the uncovered area fraction Φ. (This choice has
been done since physical properties of the structures as
well as the visual impression of these are determined
mainly by Φ rather than by the number of discs N).
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Fig. 5. Dependence of the Shannon entropy S on the free area
fraction Φ for patterns of random sequential adsorption of size-
polydisperse discs for various exponents α of the particle-size
distribution (9).
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Fig. 6. Dependence of the complexity measure G on the free
area fraction Φ for patterns of random sequential adsorption of
size- polydisperse discs for various exponents α of the particle-
size distribution (9).

It is important to note that the use of the complexity
measure Γαβ based on the comparison of the actual en-
tropy S and maximal entropy Smax of the pattern is rather
inconvenient for the case of interest. The main problem is
the determination and even the definition of Smax; it is
neither straightforward, nor unambiguous. Defining e.g.
Smax as Smax ≡ S(Φ → 1), one finds, that for patterns
with α < 1, Smax → ∞, which implies that Γαβ → 0
(α > 0, β > 0) for all such patterns at any Φ. However,
one expects that complexity of patterns should depend on
the uncovered area.

4 Results and discussion

We have studied complexity of 2D patterns using the
information-gain complexity G. It measures a lack of in-

formation about other parts of the structure, provided
some properties of the structure are known. Essentially,
the information-gain complexity indicates the presence of
inherent correlations in the system. In order to illustrate
how this quantity is related to the spatial correlations in
the system, we have first considered a specially tailored
model. This allow to generate all kind of patterns (geo-
metric ornaments) with different degree of order due to
their inherent spatial correlations. We analyzed applica-
tion of the complexity G to these patterns and observe
that G quantifies the complexity of the ornaments in ac-
cordance with intuition-based anticipation (see Figs. 1
and 2). We also show that G may be used for pattern
recognition, while the entropy, as well as disorder-based
complexity Γαβ can not effectively discriminate the pat-
terns (see Fig. 3).

Then we focussed on an application of the information-
gain complexity to patterns arising in random sequen-
tial adsorption of size-polydisperse discs onto a sub-
strate (PRSA). We chose a power-law distribution of disc
radii (9), which was motivated by the Schulz distribu-
tion [26] for colloidal particles. We observed that depend-
ing on the exponent α of the distribution (9), the struc-
tural properties of arising patterns may be drastically
different. To quantify the difference in these properties
we measure the entropy and information-gain complexity
of the PRSA patterns for different α (see Figs. 5 and 6).

As it follows from Figures 5 and 6, the entropy S is
higher for patterns with smaller α, provided they have
the same uncovered area Φ. This is mainly due to the
fact that patterns with smaller α contain more discs for
given Φ and for given size of the pattern. It provides the
quantitative description of the subjective impression that
patterns with small α are more disordered (see Fig. 4).

The highest complexity G is attributed to the pattern
formation process with α ' 1 (Fig. 6). It complies with
the intuitive understanding of complexity. Indeed, systems
with smaller α are too random to be regarded as highly
complex, while those with large α � 1 are too ordered,
being formed according to a simple deterministic rule “in-
sert the largest possible disc”. Complexity thus appears
at the frontier between disorder and order, i.e. at α ' 1
for the case of pattern formation in PRSA.

One can also see from Figure 6 that dependencies G(Φ)
exhibit short ranges of rapid decay at Φ ' 0.55 for systems
with large α. These ranges refer to transition from the
random stage of pattern formation to nearly deterministic
one. The value of Φ∞ = 0.542.. corresponds to the free
area of the jamming limit of the RSA of identical discs
on a plane [25]. For Φ < 0.55 successive disc of radii,
which are close to the maximal one, are quite randomly
placed on the substrate. The patterns arising for these
values of Φ are far from being ordered, and thus have larger
complexity than those, which appear for Φ > 0.55. In the
latter case a disc of largest possible radius is adsorbed into
a largest hole in the system. This gives rise to a nearly
deterministic rule for the pattern formation and leads to
highly ordered structures. There is no such sharp change
in the dependencies G(Φ) for the case of small α where
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the patterns always look very random. These important
changes are neither indicated by the entropy S, nor by the
disorder-based complexity Γαβ .

Physically, the complexity measure G studied here
refers to the spatial correlations hidden in the structures,
which are accounted by conditional probabilities and con-
ditional entropies of the substructures (e.g. conditional en-
tropy of a colour for ornaments, or conditional entropy of
(N+1)st disc in a given pattern of N discs). If the spatial
correlations are dominant, so that the pattern has a high
degree of order, it is not treated as a complex one. On the
other hand the entropy measure Γαβ (see Sect. 1) refers
only to the deviation of the system from its equilibrium
state, i.e. the states of the system of zero entropy and that
of the maximal one are considered as simplest. Such a defi-
nition of complexity is based on the ratio S/Smax and thus
requires knowledge of the maximal entropy Smax. This is
not easy to determine for 2D patterns and sometimes (as
in the case of PRSA) even to define unambiguously.

Contrary to Γαβ , the complexity measure G based on
the mean information-gain does not require Smax, and may
be relatively straightforwardly and unambiguously calcu-
lated. It discriminates patterns by their complexity in ac-
cordance to the visual intuitive impression: the completely
structureless patterns as well as that of a high order have
a small value of G, while at the order-disorder frontier G
is the largest.

5 Conclusion

Complexity of 2D structures has been analyzed for geo-
metric ornaments and for patterns arising in process of
random sequential adsorption of size-polydisperse discs
(PRSA). We introduce a complexity measure, based on
the mean information gain, which accounts for spatial
correlations in the system. We also consider an alterna-
tive complexity measure, based on the comparison of the
actual and maximal entropy of the system. For the geo-
metric ornaments analytical expressions for entropy and
complexity measures were obtained, while for the PRSA
patterns these were found numerically. We have shown
that the disorder-based (or maximal-entropy-based) com-
plexity is not always convenient and relevant quantity to
characterize the 2D patterns. On the other hand the new
information-gain complexity allows a sensitive discrimina-
tion of the structures, assigning the magnitude of this in
accordance with the intuition-based judgment. Thus we
conclude that the information-gain complexity G may be
effectively used as a quantitative measure of complexity of
geometric ornaments and PRSA patterns (studied here)
and more generally, of the complexity of 2D patterns.

Appendix

Here we give some detail of derivation of the expressions
given in Section 2. According to the ornament formation
rules, the col-our of each element changes at each time

step independently with probability P0. For simplicity we
consider here the corresponding model with continuous
time. For this model the probability to change a col-our
during time interval dt is equal for any cell to P0dt =
dt/τ0, where we introduce the characteristic time τ−1

0 ≡
P0. Then equation of motion for the probability of any
chosen cell to have ith col-our naturally reads:

dPi
dt

=
1
τ0

(
1
3
− Pi

)
(18)

which simply reflects the fact that the final probability
for any cell to have any one of the colors (white, grey
or black) is equal to 1/3. Solving equation (18) and us-
ing corresponding initial conditions for each color yields
equations (4).

To obtain time-dependence of the conditional proba-
bilities pij we notice that the final ornament is built up of
stripes of successively repeating triads of elements: white-
grey-black (from the bottom to top). Therefore we intro-
duce probabilities: P1(t) – the probability that all cells
of any chosen triad are grey, P2(t) – the probability that
two grey cells of a triad are on the top of a white cell,
P3(t) – the probability that black cell is on the top of
two grey cells, and finally, P4(t) – the probability that the
triad has the final colors (black on top of grey, which is
on top of white). All other combinations are excluded due
to the rules of the ornament formation. It is easy to see
that time-evolution of these probabilities is subjected to
the following set of equations:

Ṗ1 = −2τ−1
0 P1

Ṗ2 = τ−1
0 (P1 − P2)

Ṗ3 = τ−1
0 (P1 − P3)

Ṗ4 = τ−1
0 (P3 + P2) (19)

with the initial conditions P1(0) = 1, P2(0) = P3(0) =
P4(0) = 0. Solving equations (19) with the initial con-
ditions, and noticing that all the conditional probabil-
ities pij may be written in terms of the probabilities
P1(t), ... P4(t) as

pgg =
2
3
P1 +

1
3
P1(P1 + P3)

+
1
3
P2 +

1
3
P3 +

1
3
P2(P1 + P3)

pgw =
1
3
P1(P2 + P4) +

1
3
P2(P2 + P4)

pwg =
1
3
P2 +

1
3
P4

pgb =
1
3
P3 +

1
3
P4

pbg =
1
3
P3(P1 + P3) +

1
3
P4(P1 + P3)

pbw =
1
3
P3(P2 + P4) +

1
3
P4(P2 + P4), (20)

we arrive at equations (7).
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